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A B S T R A C T   

The “mobility turn” in environmental health studies promoted the integrated 3S (GIS, GPS, and remote sensing) 
approach in the study of urban residents’ exposure to green space and corresponding health outcomes. However, 
few studies have examined the uncertainty induced by contextual settings when measuring people’s exposure to 
green space using the conventional and integrated 3S approaches. In this paper, we compared the differences in 
green space exposure obtained from different geographic contexts using residence-based and mobility-based 
methods, multiple spatial resolutions, and buffer zones. We collected 7-day GPS trajectories from 208 partici
pants at the 1-minute temporal resolution in Hong Kong. Entire Hong Kong’s green space was delineated using 
multiple remote sensing data sources at 3 m, 10 m, and 30 m spatial resolutions. Lastly, the residence-based and 
mobility-based measurements of exposure to green space were calculated for each participant using 100 m, 300 
m, and 500 m buffer zones at three spatial resolutions. Descriptive analyses, t-tests, and logistic regression were 
employed to examine the influence of different contextual settings on different measurements of green space 
exposure and their health effects. The results indicate multiple significant disparities. The most striking differ
ence is that mobility-based measurements of exposure to green space are significantly higher than those of 
residence-based measurements, manifesting the uncertain geographic context problem (UGCoP). For future 
studies, we suggest using mobility-based measurements of exposure to green space, smaller buffer zones, and 
finer spatial resolutions, which enable more accurate measurements of green space exposure for the study of 
green space’s health effects.   

1. Introduction 

Urban green space and green infrastructure provide essential 
ecosystem services that influence human health through diverse and 
complex pathways (Wolch et al., 2014; Dadvand and Nieuwenhuijsen, 
2019). Numerous studies have indicated that access to green space is 
significantly associated with multiple health benefits. For instance, 
green space may promote the physical health of urban residents by 
encouraging more physical exercise (Richardson et al., 2013; Hillsdon 
et al., 2006). The improved landscape beautification by green space may 
promote the mental health of urban residents by reducing stress levels 

and decreasing the risks of mental disorders (Groenewegen et al., 2006; 
Nutsford et al., 2013). Other studies also indicate that some adverse 
health effects may be strongly associated with green space, like 
vector-borne diseases (Heylen et al., 2019; Barrios et al., 2012), 
aero-allergy and asthma caused by pollen (Cariñanos and 
Casares-Porcel, 2011), and the accumulation of pollutants in the soil 
(Lin et al., 2018; Rubel et al., 2019). Meanwhile, the uneven distribution 
of and unequal access to green space have also triggered an intensive 
discussion on green space as a social determinant of health, especially on 
the issues of environmental injustice (Liu et al., 2021) and the gentri
fication of living environments (Cole et al., 2017). In the recent two 
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decades, research on the health effects of green space keeps growing 
rapidly and has never shown a declining trend. 

The proper measurement of the interaction between urban residents 
and green space, namely the measurement of people’s exposure to green 
space, is the most essential component in the quantitative analysis of the 
health effects of green space. Current prevailing approaches measure 
people’s green space exposure around their residential locations (i.e., 
residence-based measurements, RBM). The research paradigm of RBM is 
easy to implement and be coupled with epidemiological health data, but 
it also easily incurs contextual errors and manifests the uncertain 
geographic context problem (UGCoP) (Kwan, 2012). The integration of 
GIS, global positioning systems (GPS), and remote sensing methods (the 
integrated 3S approach (Blaschke et al., 2011)) nowadays provides a 
new research paradigm for the measurement of people’s exposure to 
green space. In this new paradigm, people’s exposure to green space is 
measured along their daily activity-travel trajectories (i.e., 
mobility-based measurements, MBM). MBM can mitigate the contextual 
errors of RBM but still may be affected by improper contextual settings 
(e.g., the spatial resolution of the green space representation, the size of 
the contextual unit, and other geographic contexts), while current 
studies lack systematic investigation on this issue. 

To fill this research gap, this study conducts a series of statistical tests 
to investigate the effects of contextual settings on measuring people’s 
green space exposure, specifically with respect to the differences be
tween RBM and MBM of green space exposure using a range of remote 
sensing imagery with different spatial resolutions, a range of buffer 
zones for representing proximity, and in different geographic contexts. 
The study’s objectives are to examine 1) whether there are significant 
differences between RBM and MBM of green space exposure; 2) whether 
significant differences exist in the measurements of green space expo
sure while taking into account other contextual settings and different 
geographic contexts; and 3) whether these differences would lead to 
unreliable interpretations of green space’s effects on human health. 

2. Literature review 

The magnitude of people’s exposure to green space is essential for 
evaluating the health effects of green space on urban residents. But its 
measurement is not as straightforward as measuring the level of sound, 
the concentration of air/water/soil pollutants, and the luminosity of 
light. The complexity arises from several sources. First, green space is an 
aggregation of diverse health-impact factors. Green space not only 
serves as a feature that promotes urban residents’ physical exercise 
(McCormack et al., 2010), but its components and characteristics (such 
as its flora, fauna, microbiota, inner air quality, inner soil, hydrology, 
local climate, and facilities) may also influence human health through 
diverse pathways. Second, green space may affect human health across a 
range of spatial scales. For example, in-situ close contact with green 
space may be associated with the risk of tick-borne Lyme diseases 
(VanAcker et al., 2019), while its effects on modifying local climate and 
mitigating urban heat waves may require a community-level investiga
tion (Tan et al., 2007; Madrigano et al., 2015). Third, green space is a 
highly socialized and culturalized place in urban areas, and the different 
ways in which urban residents use green space may not yield equivalent 
health outcomes. Due to the complexity of green space exposure mea
surements, multiple approaches are currently available but most of them 
tend to have inherent biases. 

The most straightforward approach to assessing people’s green space 
exposure is to investigate people’s subjective perception of urban green 
space through questionnaires and interviews (e.g., Balram and 
Dragićević, 2005). However, participants’ self-reported perceptions of 
green space may contain recall errors, may be inconsistent in different 
socio-demographic groups, and thus may undermine the validity and 
generalizability of relevant studies. 

Instead, objectively measured exposure to green space using GIS and 
real-time tracking and sensing is more consistent and can capture 

people’s exposure as they move around. This approach first establishes a 
numerical model to represent green space and then derives the green 
space variable based on a specific human-relevant context (e.g., resi
dential neighborhood) as people’s exposure to green space. It generally 
used green space representations and derivations including green space 
indices (e.g., the normalized difference vegetation index, NDVI) and 
green space area ratio (Barboza et al., 2021), green space time-series 
(Cao et al., 2023), green space attributes and component statistics, 
and green space landscape and fragmentation (Tsai et al., 2016). The 
most generally used human-relevant contexts in current studies are 
residence-based spaces such as the residential neighborhood, adminis
trative area, and buffer zone around a home location. The values of the 
green space variable in residential spaces are considered people’s 
exposure to green space (i.e., RBM), while the spatial variation in green 
space settings across different residential spaces is considered the vari
ation in people’s exposure to green space. 

Ignoring people’s mobility is one essential shortage of RBM and it 
may lead to contextual errors. People may travel outside the residential 
area and the nominal residential contexts may include irrelevant green 
space that a person has never been exposed to while excluding essential 
green space that a person frequently visits. An alternative approach from 
time geography is to use activity space to replace residential space in the 
objective measurements of green space exposure (i.e., MBM) (Kwan, 
2004). Practical implements include the 1-standard deviational ellipse, 
the minimum concave polygon, and the shortest path (and adjacent 
buffer zone) between people’s visited locations (Wei et al., 2023), while 
people’s visited locations can be obtained from activity-travel diaries 
(Kwan, 2000). MBM by definition is conceptually more reasonable than 
RBM, but conventional MBM faces the same validity issues since the 
self-reported visited locations in activity-travel diaries may be spatio
temporally sparse and may also contain recall errors. 

The prevalence of portable GPS and sensing devices overcomes the 
limitations of conventional MBM since GPS data with high temporal 
resolution and adequate spatial accuracy enable the retrospective 
delineation of a person’s every visited location and correspondingly the 
precise activity space. The new approach requires the integration of 3S 
techniques: GPS trajectories delineate people’s precise activity space, 
remote sensing data numerically represent the spatial distribution of 
green space, and GIS techniques derive people’s exposure to green space 
along their activity-travel trajectories. 

Using either MBM or RBM, the ultimate goal is to maximally include 
the causally relevant green space in green space exposure measurements 
while minimally including the irrelevant green space. MBM can mitigate 
the contextual errors in RBM by replacing the nominal residential space 
with activity space, but the measurements may still be affected by other 
contextual settings. Previous studies have discussed these contextual 
settings only in RBM (e.g., Su et al., 2019; Nouri et al., 2020; Jimenez 
et al., 2022), but the knowledge and proper contextual settings obtained 
using RBM may not be directly transferable to MBM since they are two 
different research paradigms. This research gap motivates our study and 
we decide to articulate this issue through a systematic experiment. We 
conceptualize four potentially influential contextual settings and control 
these contextual settings to derive multiple groups of green space 
exposure measurements (Fig. 1 as an illustration of our conceptual 
framework). We then discuss the disparities between these measure
ments when using different contextual settings and their effects on 
modeling people’s overall health outcomes. Our experiment is detailed 
in the following sections. 

3. Study area 

The study area for this research is Hong Kong, which is one of the 
most densely populated cities in the world. In this study, two repre
sentative communities, namely the Sham Shui Po (SSP) community and 
the Tin Shui Wai (TSW) community, were chosen for the field surveys 
(Fig. 2). TSW is a densely populated community in Hong Kong. The 
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blocks of TSW included in this study have a total area of 4.32 km2 and 
the residential population is about 300,000 by 2018. TSW is a new town 
that is developed in the 1980 s (Liu et al., 2023) and it is enclosed by 
more rural areas like villages, fish farms, and wetlands (Fig. 2b). The 
facilities and infrastructures in TSW are well-designed with better open 
space and the roads are distant from residential buildings with green 
spaces between them as barriers. SSP shares a very similar population 
density as TSW but it is in an apparently different geographic context 
(Fig. 2c). The blocks of SSP included in this study have a total area of 
5.35 km2 and its residential population is also about 300,000 by 2018. 
SSP is an old town with a very long history and it is deeply urbanized. 
This community is near the downtown area of Hong Kong where green 
space is comparatively sparse. 

4. Datasets 

4.1. Remote sensing data 

Three multispectral imagery data sources are employed in this study 
for examining the impacts of spatial resolutions on measuring people’s 
green space exposure. The first is conventionally used Landsat imagery 
at the 30 m spatial resolution, the second is newly emerged Sentinel-2 
imagery at the 10 m spatial resolution, and the last is a commercial 
remote sensing data source called PlanetScope, which has a spatial 
resolution of 3 m. More details about the data’s attributes are shown in  
Table 1. 

Landsat 8 images were collected from the United States Geological 
Survey (USGS) EarthExplorer (https://earthexplorer.usgs.gov/), 
Sentinel-2 images were collected from the European Space Agency (ESA) 
Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/ 
#/home), and PlanetScope images were collected from Planet Labs, Inc. 
(https://www.planet.com/explorer/) at no cost using an Education and 
Research (ER) license. All three image sources provide a red band and a 
near-infrared (NIR) band (Roy et al., 2014; Drusch et al., 2012; Team, 
2017), which enable the derivation of NDVI. All images have been 
radiometrically calibrated and atmospherically corrected into land 
surface reflectance: Landsat 8 images used Land Surface Reflectance 
Code (LaSRC) (Sayler and Zanter, 2020), Sentinel-2 images used the 
Scene Classification (SCL) and the Sen2Cor processor that ESA provides 
(Main-Knorn et al., 2017), and PlanetScope images used the 6S Model 
(Frazier and Hemingway, 2021). All three sets of images are orthor
ectified and georeferenced to UTM Zone 49N coordinate system with 
reference to the WGS84 ellipsoid, and they all can fully cover the entire 
Hong Kong. All images have cloud coverage of less than 1% and are 

collected within a narrow temporal window to avoid the seasonal 
changes in Hong Kong’s green space. The cross-validation using pure 
pixels indicates that the reflectance differences among the three sets of 
images are not significantly different from 0, which confines the 
contextual settings to only spatial resolutions and has excluded other 
possible impact factors like seasonal changes in geographic contexts and 
remote sensors’ configurations. 

4.2. GPS-derived activity-travel trajectories and questionnaires 

In total, 222 participants were recruited from SSP and TSW using a 
stratified sampling method (as a part of a larger project). The socio- 
demographic characteristics of the participants were designed to be 
representative of the characteristics of each community. Multiple axes of 
the socio-demography were used for stratification, including age, 
gender, employment status, and monthly household income. The survey 
was carried out from March 21st, 2021, to September 12th, 2021. Par
ticipants were asked to record and submit data through an integrated 
individual environmental exposure assessment system (Wang et al., 
2021). For each participant, the visited locations of the 7 survey days 
were then assembled from participants’ GPS-equipped mobile phones 
and integrated using the Kalman filter (Lee and Kwan, 2018). A time 
series of sequentially visited locations (in longitude and latitude) of each 
participant was derived at the 1-minute temporal resolution to retro
spectively delineate the activity-travel trajectory during the 7-day sur
vey period. More details on the survey can be found in our previous 
papers (Liu et al., 2023; Wang et al., 2021). 

The overall health status, home addresses, and socio-demographic 
information of the recruited participants were collected using a ques
tionnaire. In the questionnaire, each participant was asked to rate his or 
her overall health status. The response is provided on a 6-point scale 
ranging from excellent to terrible. Due to the comparatively small 
sample size, the health status responses were dichotomized as a binary 
variable based on either an overall good health status (excellent, very 
good, and good, recoded as 1) or an overall bad health status (bad, very 
bad, and terrible, recoded as 0). 

By excluding void responses and incomplete activity trajectories, the 
survey finally yielded valid data from 208 participants: 104 participants 
in SSP and the other 104 participants in TSW. The participants cover a 
range of socio-demographic statuses through multiple axes (Table 2), 
including gender, age, education level, marital status, and monthly 
household income level. 

Fig. 1. The conceptual framework of this study.  
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Fig. 2. The geographic settings of SSP and TSW. (a). The locations of SSP and TSW in Hong Kong, (b). the geographic settings of TSW, and (c). the geographic settings 
of SSP. 
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5. Methods 

5.1. The derivation of the NDVI and the delineation of green space 

The NDVI (Purevdorj et al., 1998) is calculated using 

NDVI =
ρNIR − ρRed

ρNIR + ρRed
, (1)  

where ρNIR and ρRed are the surface reflectance acquired from NIR and 
red bands, respectively. The NDVI theoretically ranges from -1 to 1. 
Health vegetations generally have high values of NDVI while other land 
covers do not. 

We developed a thresholding method to delineate the green space in 
Hong Kong (Rafiee et al., 2009), where the threshold is determined by a 
logistic regression model. One experienced researcher in our team 
randomly interpreted 300 sites as a training sample set, where 220 of 
these sites are green spaces. We used the training sample set to fit a 
logistic regression model using the maximum likelihood estimation. The 
fitted model is as follows, 

log
P(green space)

1 − P(green space)
= β0 + β1 ∗ NDVI, (2)  

where P(green space) is the probability that a site is a green space, β0 and 
β1 are the intercept and coefficient of the logistic regression, respec
tively. Take P(green space) = 0.5, we have the threshold of NDVI as 

NDVI0 = −
β1

β0
. (3) 

Using NDVI0 as a threshold, the region with NDVI higher than NDVI0 

is determined as green space, while the region with NDVI lower than 
NDVI0 is determined as other spaces. Another experienced researcher of 
our team randomly interpreted one more independent test sample set 
from Google Maps to validate the delineated green space. The test set has 
1000 sites, where 613 of them are green space and no site in the test set 
overlaps with that in the training set. The binary classification results are 
converted into a raster format for the following analysis. 

5.2. Measuring exposure to green space 

Similar to other studies, we used an area-based index to measure 
people’s green space exposure (Huang and Kwan, 2022; Cherrie et al., 
2019; Zhang and Wu, 2022). For residence-based measurements (RBM) 
of exposure to green space, the formula is constructed as 

EGS− RSD =
A(GSp ∩ Buf r)

A(Buf r)
, (4)  

where EGS− RSD is the RBM of exposure to green space. Bufr is the circular 
buffer zone around the home location of the participant with a radius r, 
and r = 100 m, 300 m, and 500 m in different contextual settings, 
respectively. GSp is the green space delineated at the spatial resolution of 
p, and p = 3 m, 10 m, and 30 m in different contextual settings, 
respectively. Function A() calculates the targeted area, namely the 
intersection area between the delineated green space and the buffer 
zone, and the buffer zone itself, respectively. EGS− RSD ranges from 0 to 1. 
The higher the value, the more a participant is exposed to green space 
around his or her home location. 

For mobility-based measurements (MBM) of exposure to green space 
given an activity-travel trajectory in the form of a series of visited lo
cations P

(
xi, yi, ti

)
, i = 1, 2, 3…, the exposure is defined as an accumu

lation of a series of momentary exposure to green space at each location 
and weighted by the duration of exposure at that location: 

EGS− MBL =
∑

WSiWTi, (5) 

where the momentary exposure to green space WSi at the i-th loca
tion (xi, yi) is 

WSi =
A(GSp ∩ Buf ri)

A(Buf ri)
, (6)  

and the temporal weight WTi at the i-th moment ti within the duration 

Table 1 
The sensor configurations of the remote sensing data employed in this study.  

Data source Acquisition date Spatial 
resolution 

Red band Near-infrared 
band 

PlanetScope 1/29/2021 3 m 650 – 
680 nm 

845 – 885 nm 

Sentinel-2 1/29/2021 10 m 650 – 
680 nm 

785 – 900 nm 

Landsat 8 1/28/2021, 2/4/ 
2021 

30 m 640 – 
670 nm 

850 – 880 nm  

Table 2 
The socio-demographic profiles and self-reported overall health status in SSP/TSW.  

Variable Sham Shui Po Tin Shui Wai 

Gender Male 44 (42.3%) 48 (46.2%) 
Female 60 (57.7%) 56 (53.8%) 

Age 18–24 16 (15.4%) 21 (20.2%) 
25–44 52 (50.0%) 51 (49.0%) 
45–64 36 (34.6%) 32 (30.8%) 

Monthly household incomea Low 47 (45.2%) 27 (26.0%) 
Middle 32 (30.8%) 48 (46.2%) 
High 25 (24.0%) 29 (27.8%) 

Education levelb Low 37 (35.6%) 36 (34.6%) 
Middle 55 (52.9%) 56 (53.8%) 
High 12 (11.5%) 12 (11.5%) 

Marriage statusc Single 53 (51.0%) 58 (55.8%) 
Married 40 (38.5%) 35 (33.7%) 
Others 11 (10.6%) 11 (10.6%) 

Overall health status Excellent/very good/good 91 (87.5%) 93 (89.4%) 
Bad/very bad/terrible 13 (12.5%) 11 (10.6%) 

Total 104 (100.0%) 104 (100.0%)  

a Monthly household income: the low-income group has an income of less than 20,000 Hong Kong dollars (HKD), the 
middle-income group has an income of 20,000 ~ 39,999 HKD, and the high-income group has an income of 40,000 HKD 
or above. 

b Education level: the low group graduated from middle school or lower, the middle group is with a bachelor’s degree 
or certification, and the high group is with a master’s degree or higher. 

c Other marital statuses include those divorced and widowed. 
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(D) of the time series is 

WTi =
ti+1 − ti

D
. (7) 

EGS− MBL also ranges from 0 to 1. The larger the value, the more a 
participant gets exposed to green space along his or her activity-travel 
trajectory. 

Here we argue that the health effects of green space on mobile people 
are not only from the closest in-situ green space but also from distant 
green space (e.g., seeing green space located outside one’s normal 
walking distance). Thus, a buffer zone that includes all possible influ
ential green space is necessary to calculate the momentary exposure to 
green space, especially for the fine-grain green space delineated from 
high spatial resolution remote sensing imagery. To be consistent with 
EGS− RSD, Bufri is the buffer zone around the i-th visited location of the 
participant with a radius r, and r = 100 m, 300 m, and 500 m, respec
tively. On the other hand, a few time steps in the time series of visited 
locations may include scattered missing values. Technically, excluding a 
time step with a missing value results in a longer gap between its pre
vious valid time step and its later valid time step, and a heavier weight 
(WTi) of the previous adjacent visited location. This is used to mitigate 
the effects of invalid time steps with missing values. Both the RBM and 
MBM of the exposure to green space are calculated for each participant 
in both SSP and TSW, using a range of spatial resolutions and buffer 
zones, respectively. To promote computational efficiency, we developed 
a Python script using ArcGIS Pro to implement the proposed approaches. 
We implemented controls for 2 geographic contexts in Hong Kong 
(TSW/new town and SSP/old town), 2 measurement approaches (RBM 
and MBM), 3 buffer zone sizes (100 m, 300 m, and 500 m), and 3 spatial 
resolutions (3 m, 10 m, and 30 m). In total, 36 groups (combinations of 
different contextual settings) were established to systematically examine 
the effects of contextual settings on measuring people’s exposure to 
green space. 

5.3. Statistical analysis 

Paired sample t-tests and Welch two-sample t-tests were employed to 
test the differences between the measured exposure to green space using 
different contextual settings. Meanwhile, the measured exposure to 
green space that contains contextual errors may lead to misleading re
sults when analyzing the effects of green space on human health. To 
examine this problem, 36 binary logistic regression models were esti
mated to evaluate the overall health outcome using each measured 
exposure to green space as a predictor, respectively. Several socio- 
demographic variables are also incorporated into these models to con
trol for the effects of possible confounders (Su et al., 2019; Dempsey 
et al., 2018), including age, gender, educational level, marital status, 
and socio-economic status. The effect size of each measured exposure to 
green space and the corresponding p-value are used to discuss the 
robustness of the measured exposure to green space across the gradients 
of contextual settings. 

6. Results 

6.1. The measured exposure to green space 

Each of the contextual settings considered in this study has a 
different mechanism that leads to a possible bias in the measurements of 
people’s exposure to green space. The first one is the delineation of 
green space using different data sources and spatial resolutions. Since 
the remote sensing process has been studied well and has been rigor
ously controlled, different multispectral sensors onboard various earth 
observation satellites may yield equivalent land surface reflectance and 
the NDVI after rigorous radiometric calibration and atmospheric 
correction (Moravec et al., 2021). However, the spatial resolution of the 
remote sensing imagery is one of the pre-determined sensor configura
tions that are not feasible for interconversion between different remote 
sensing platforms. Thus, the spatial resolution of remote sensing imag
ery may be a factor that affects the delineation of green space. Our 
approach has successfully delineated green space at different spatial 
resolutions with very high accuracy (Table 3), and Fig. 3 gives an 
example of the disparities in the delineation of green space. Coarser 
spatial resolution may lead to more mixed pixels, in which the spectral 
signature of the land surface is blurred (Jiang et al., 2006) and it has a 
higher risk of misclassification. The NDVI at the 30 m spatial resolution 
has many more mixed pixels and it loses multiple small essential green 
spaces that people may frequently use (Fig. 3). The NDVI at the 10 m 
spatial resolution enables the detection of green space with adequate 
location information but inaccurate boundary information. In contrast, 
the NDVI at the 3 m spatial resolution enables the reliable delineation of 
green space boundary. These disparities may induce influential errors 
when measuring people’s exposure to green space. 

The other influential factor is people’s mobility when measuring 
their exposure to green space. Our approach has successfully derived 
participants’ exposure to green space around both their home locations 
and the visited locations along their activity-travel trajectories at the 1- 
minute temporal resolution for 7 days. Our results indicate that people 
may have different levels of exposure to green space in different visited 
locations along their activity-travel trajectories (Fig. 4). In some cases, a 
person may live in a place with sparse green space but work in a place 
with rich green space. In other cases, a person may have sparse green 
space in both his home and workplace but may get exposed to dense 
green space through daily commuting. Moreover, participants’ activity 
spaces are far beyond the often-used 500-m buffer zone around the home 
location, and RBM of people’s exposure to green space or measurements 
using only home and the workplace unavoidably induce contextual er
rors in the quantitative analysis of the interaction between people’s 
exposure to urban green space and associated health outcomes. 

Buffer zone size is also an influential factor when measuring people’s 
exposure to green space. Hong Kong is highly urbanized with frag
mented green space and the exposure to green space may not be pro
portional to the area size of buffer zones. An example in Fig. 4 indicates 
that a larger buffer zone may enlarge the measured exposure to green 
space by containing more green space, especially in areas with sparse 

Table 3 
The determined threshold values a to delineate green space for each remote sensing data source and corresponding classification accuracy of green space b.   

β0 β1 NDVI0 Producer accuracy User accuracy Overall accuracy KIAc 

PlanetScope (3 m) -68.952 165.627 0.416 93.3% 95.5% 93.2% 0.858 
Sentinel-2 (10 m) -50.619 142.517 0.355 94.3% 94.4% 93.1% 0.855 
Landsat 8 (30 m) -80.397 215.533 0.373 93.8% 93.5% 92.2% 0.835  

a Sample size for training = 300. 
b Sample size for validation = 1000. 
c KIA: Kappa index of agreement. 
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green space. Improper buffer zone may also induce contextual errors (e. 
g., buffer zones that are too large may include green space that a person 
is not exposed to). 

6.2. The differences induced by contextual settings 

Our observations of the participants’ exposure to green space 
confirm the differences induced by contextual settings in different 
geographic contexts (Fig. 5 and Table 4). Participants in TSW are 
exposed to more green space than SSP, which agrees well with the 
geographic contexts of these two representative communities (Fig. 2). 
However, the differences are not significantly different from 0 at the 

0.05 level when using a small buffer zone and using the 3 m and 30 m 
spatial resolutions. 

The differences between MBM and RBM of exposure to green space 
all are significantly different from 0 at the 0.05 level, especially for 
smaller buffer zones. Our results show that MBM of exposure have 
higher values than RBM in all cases considered in this study. These re
sults indicate that the measurements of people’s exposure to green space 
may face significant underestimation while only considering people’s 
residential neighborhoods and ignoring their exposure to green space 
through traveling (Fig. 5). The significant differences are observed for 
both an old town (SSP) and a new town (TSW) in Hong Kong. 

The spatial resolution has inconsistent effects on measuring exposure 

Fig. 3. The delineation of green space at 3 m, 10 m, and 30 m spatial resolutions and in-situ references.  

Fig. 4. The spatial variation of exposure to green space. Apparent spatial variation can be observed along a participant’s activity-travel trajectory.  
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to green space. Compared to the finest spatial resolution (3 m), the 
moderate spatial resolution (10 m) tends to enlarge the measured 
exposure to green space because the misclassification on the edge of the 
green space may overestimate the extent of green space (Fig. 3). 
Compared to the moderate spatial resolution, the coarsest spatial reso
lution (30 m) tends to shrink the measured exposure to green space due 
to the misclassification and the loss of essential small green spaces that 
people may frequently visit (Fig. 3). Compared with the finest spatial 
resolution, the coarsest spatial resolution has an overestimating effect 
on the edge of the green space and an underestimating effect by losing 
small green spaces. The dual effects may yield similar values but the 
values from the coarsest spatial resolution cannot be called accurate 
since it contains multiple sources of biases. 

A larger buffer zone tends to enlarge the measured exposure to green 
space. Hong Kong is a well-developed city with highly fragmented 
landscapes, which means the landscape changes rapidly across space. 
The closest exposure to green space can be captured using a small buffer 
zone like 100 m. In contrast, a large buffer zone, like 500 m, may 
include too much green space that a person does not get exposed to. 
Although all the differences are significantly different from 0 at the 0.05 
level, our results also indicate that a larger buffer zone may mitigate the 
differences between RBM and MBM but enlarge the differences induced 
by spatial resolutions. 

We also calculated the Pearson’s correlation coefficients between 
each pair of the exposure measurements and plotted the correlogram 
(Fig. 6). It is not surprising that the correlation coefficients quickly 

Fig. 5. The mean values of measured exposure to green space bounded with 95% confidence belts using the designated 36 groups of contextual settings: (a) in SSP, 
n = 104, and (b) in TSW, n = 104. 
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decrease as the difference in the contextual settings increases. The 
changes range from 1.00 to 0.36 in SSP and from 0.99 to 0.20 in TSW. 
The correlograms confirm again that different contextual settings can 
lead to different measured exposure to green space and the measure
ments are less similar when there is more difference in the contextual 
settings. 

6.3. The modeled health outcomes using measured exposure to green 
space 

We employed a group of binary logistic regression models to assess 
the potential impacts of contextual settings on people’s exposure to 
green space and self-reported overall health outcomes (Fig. 7). The re
sults indicate the different effects of green space on human health in 
different geographic contexts. Similar to other studies, we found a 
possible promoting effect of exposure to green space on participants’ 
self-reported overall health in TSW. However, none of these estimated 

effect sizes is significantly different from 0 at the 0.05 level. In contrast, 
we observed a possible adverse effect of exposure to green space in SSP, 
and most of the effect sizes are significantly different from 0. Note that 
our data are collected during the COVID-19 pandemic. Higher MBM of 
exposure to green space of the participants who live in the downtown 
area of Hong Kong may indicate more recreational visits to suburban 
green space, more contact with other visitors, and thus higher COVID-19 
risks (Huang et al., 2020), which may explain the adverse effect of green 
space in SSP. 

The most striking disparity is between MBM and RBM of exposure to 
green space. Multiple significant effect sizes are observed using MBM in 
SSP, while only these RBM using the smallest buffer zone can detect a 
significant effect size in SSP. The RBM of exposure and the measured 
exposure using a larger buffer zone may include too many contextual 
errors, and the erroneous measurements lead to a higher risk of Type II 
error that fails to reject the null hypothesis. The spatial resolution has 
less power to increase the risk of Type II error. Only coarse spatial 

Table 4 
Paired sample t-tests and two-sample t-tests of measured exposure to green space with systematic controls of green space spatial resolutions, buffer zone sizes of 
proximity, measure approaches (RBM and MBM), and geographic contexts.  

Section I: comparing green space spatial resolutions using paired sample t-tests 

Geographic context Measure approach Buffer zone radius Green space spatial resolution 

10–3 m 30–10 m 

t p-value t p-value 

SSP (old town) RBM 100 m 8.865 < 0.001 -8.424 < 0.001 
300 m 17.725 < 0.001 -18.269 < 0.001 
500 m 28.259 < 0.001 -28.499 < 0.001 

MBM 100 m 13.538 < 0.001 -11.042 < 0.001 
300 m 22.126 < 0.001 -20.001 < 0.001 
500 m 31.977 < 0.001 -29.630 < 0.001 

TSW (new town) RBM 100 m 15.463 < 0.001 -17.151 < 0.001 
300 m 25.984 < 0.001 -29.583 < 0.001 
500 m 37.402 < 0.001 -45.031 < 0.001 

MBM 100 m 19.522 < 0.001 -20.887 < 0.001 
300 m 29.858 < 0.001 -31.844 < 0.001 
500 m 41.113 < 0.001 -45.148 < 0.001 

Section II: comparing buffer zone sizes of proximity using paired sample t-tests 

Geographic context Measure approach Spatial resolution Buffer zone radius of proximity 

300–100 m 500–300 m 

t p-value t p-value 

SSP (old town) RBM 3 m 7.981 < 0.001 7.318 < 0.001 
10 m 7.940 < 0.001 7.087 < 0.001 
30 m 6.664 < 0.001 7.921 < 0.001 

MBM 3 m 6.843 < 0.001 7.931 < 0.001 
10 m 6.904 < 0.001 8.011 < 0.001 
30 m 6.418 < 0.001 7.648 < 0.001 

TSW (new town) RBM 3 m 8.753 < 0.001 13.343 < 0.001 
10 m 5.745 < 0.001 11.728 < 0.001 
30 m 8.892 < 0.001 11.003 < 0.001 

MBM 3 m 6.720 < 0.001 11.526 < 0.001 
10 m 5.723 < 0.001 11.077 < 0.001 
30 m 6.327 < 0.001 10.583 < 0.001 

Section III: comparing measurement approaches using paired sample t-tests 
and comparing geographic contexts using Welch two-sample t-tests 

Spatial resolution Buffer zone radius MBM - RBM TSW (new town) – SSP (old town) 

SSP (old town) TSW (new town) RBM MBM 

t p-value t p-value t p-value t p-value 

3 m 100 m 5.537 < 0.001 8.450 < 0.001 0.299 0.765 1.414 0.159 
300 m 5.048 < 0.001 7.988 < 0.001 0.552 0.582 1.182 0.239 
500 m 4.419 < 0.001 4.634 < 0.001 2.626 0.009 2.466 0.015 

10 m 100 m 5.224 < 0.001 4.663 < 0.001 5.350 < 0.001 4.340 < 0.001 
300 m 4.781 < 0.001 4.821 < 0.001 4.551 < 0.001 4.235 < 0.001 
500 m 4.244 < 0.001 2.462 0.015 6.344 < 0.001 5.774 < 0.001 

30 m 100 m 5.576 < 0.001 9.091 < 0.001 0.220 0.827 1.183 0.238 
300 m 5.481 < 0.001 6.791 < 0.001 1.497 0.136 1.494 0.137 
500 m 4.642 < 0.001 4.197 < 0.001 3.279 0.001 2.773 0.006  
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resolution, like 30 m, may lead to failure in the rejection of the null 
hypothesis while using the MBM in SSP. 

7. Discussions 

7.1. Methodological issues when measuring people’s exposure to green 
space 

The most striking disparity observed in this study is between MBM 
and RBM of exposure to green space. RBM only consider people’s 
exposure to green space around their home locations (e.g., space within 
about 10 minutes of walking (Villeneuve et al., 2012)), and it may 
ignore a large amount of exposure to green space when people are 
moving around for daily activities. The contextual errors resulting from 
this mismatch can be influential especially when people’s activity spaces 
are different from the determined buffer zone around their home 

locations, which manifests the UGCoP (Kwan, 2012). Using GPS-derived 
activity-travel trajectories and MBM of exposure to green space can 
effectively mitigate the UGCoP. Our results show that significant dif
ferences are observed between RBM and MBM. These differences can be 
considered the contextual errors mitigated by MBM and our results also 
indicate that these contextual errors may lead to erroneous results when 
using the RBM of exposure to green space to model people’s health 
outcomes. 

The other methodological issue revealed in our study is the different 
health effects of green space on urban residents in different commu
nities, which manifests spatial non-stationarity (the effect of an envi
ronmental factor on human health varies over space) (Kwan, 2021). We 
have observed a significant adverse effect of green space in SSP and an 
insignificant promoting effect of green space in TSW, which indicates 
that green space may play different roles in different geographic con
texts. Correspondingly, the measured exposure to green space may also 

Fig. 6. The correlation coefficients between measured exposure to green space at 3 m, 10 m, and 30 m spatial resolutions and using 100 m, 300 m, and 500 m buffer 
zones in (a) SSP and (b) TSW. Each variable is named in the form of residence-based (R) / mobility-based (M) – spatial resolution – buffer zone radius. All correlation 
coefficients are significantly different from 0 at the 0.05 level. 

Fig. 7. The logit values bounded with 95% confidence intervals using the designated 36 groups of contextual settings and binary logistic regression. The estimated 
logit values were adjusted by age, gender, educational level, marriage status, and socio-economic status. 
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be sensitive to geographic contexts: various contextual settings in TSW 
make no difference to the results, but the differences between MBM and 
RBM of exposure to green space may lead to erroneous results in SSP. 

7.2. The implications of this study 

In our systematic analysis, we have confirmed the uncertainty 
induced by the contextual settings when measuring people’s exposure to 
green space, like between RBM and MBM, among different spatial res
olutions, and among different buffer zones. The uncertainty induced by 
contextual settings does have an impact on the modeling of health 
outcomes and may increase the risk of Type II errors. As a result of this 
study, we suggest measuring people’s exposure to green space using a 
mobility-based approach, a smaller buffer zone, and a finer spatial res
olution. Due to spatial non-stationarity, systematic evaluations and tests 
may be necessary for other places. 

Our empirical study can provide critical suggestions in the green 
space exposure measurements for a broad scope of studies that may 
consider green space as an essential environmental factor of human 
health. Our results also indicate that previously observed health effects 
of green space (especially those based on RBM) may risk improper 
contextual settings and context errors and they may need to be re- 
examined. 

7.3. The limitations of this study 

Our study also faces some limitations. First, this study is cross- 
sectional and thus cannot examine the temporality of the contextual 
uncertainty and temporal non-stationarity. Second, due to the diffi
culties in the data collection, we only have a relatively small sample size. 
Although we detected multiple significant differences using this small 
sample, a large sample from future longitudinal data collection may 
further strengthen and extend our understanding of the uncertainty 
induced by contextual settings when measuring people’s exposure to 
green space. 

8. Conclusions 

In this study, we have discussed the uncertainty induced by 
contextual settings when measuring people’s exposure to green space 
using the integrated 3S approach. The measurements of green space 
exposure are compared between residence-based and mobility-based 
approaches, using a range of spatial resolutions and buffer zones in 
different geographic contexts. The uncertainty induced by contextual 
settings is discussed for all participants and in the modeling of their 
overall health outcomes. We have observed multiple significant differ
ences between different contextual settings. Mobility-based measure
ments of exposure to green space are significantly higher than residence- 
based measurements. A larger buffer zone tends to overestimate green 
space exposure and the spatial resolution has inconsistent effects on the 
measured exposure to green space. Improper contextual settings may 
lead to erroneous results in modeling people’s health outcomes. These 
disparities are typical manifestations of the UGCoP and spatial non- 
stationarity. Consequentially, we suggest measuring people’s exposure 
to green space using mobility-based approaches, a finer spatial resolu
tion, and a smaller buffer zone. We also suggest a systematic analysis of 
the uncertainty induced by contextual settings when measuring people’s 
exposure to green space in other places before discussing the health 
effects of green space. 
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